

Our mission is to provide the highest quality engineering and geoscience consulting services to the petroleum industry in a creative, technologically rigorous, ethical, and cost effective fashion.

"Slowly but Surely" is the mantra for 2017!

As the industry recovers from the fall in oil prices, many companies are realizing that stability has returned to market and they are starting to pursue development of newly acquired or existing properties.

Let IRT assist you with any subsurface needs you may have. With the continuing oil price recovery, it is time to re-evaluate and dust-off those projects that have been deferred or downsized. IRT feels that there is no better time than right now to look into the feasibility of any Enhance Oil Recovery (EOR) project you may be considering.

Ethane EOR Update

Industry estimates of nearly 400 billion barrels (BBbls) of remaining oil in place (ROIP) is one of the reasons behind using Ethane EOR as a miscible injectant.

Why Ethane and not CO2? The supply of CO2 is limited by geographic area and Ethane is now abundant throughout the U. S. and very cheap. Not only is Ethane a better solvent than CO2 for EOR injection with lower miscibility pressure, Ethane does not present the metallurgical issues that arise with CO2.

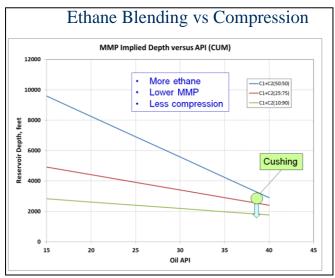
Ethane could recover an additional 15-25% of the remaining oil. Ethane can also improve oil recovery in tight oil reservoirs and many of the unconventional reservoirs that are active today.

IRT sees great potential using Ethane with a substantial return on investment for many reservoirs screened to date. Below are two examples.

Cushing Field, Oklahoma

Only the southern end of Cushing Oil Field was evaluated, or about 20% of the Bartlesville Sand reservoir. A screening template of 16 reservoir

parameters (depth, porosity, oil API, etc.) is used to assess an Ethane EOR project. The screening parameters are put into a stop-light matrix of Good (green), Caution (yellow), and Warning (pink) categories depending on each individual parameter. Parameters that fall into the Caution and Warning categories are not "show-stoppers" but simply mean that additional analysis is necessary.


Of the remaining 220 MMBO in this portion of the Cushing Field, about 55.5 MMBO is estimated to be recovered through Ethane EOR (assumes Ethane recovers 25% of the ROIP). Assuming a net oil price of \$27 per barrel (after tax, royalty, and operating expenses), the EOR prize is quite substantial (\$1503MM).

Cushing Screening Data		
		Good
		Caution
		Warning
Depth	ft	2800
Oil Gravity	API	38
Solution Gas	Pb/Pi	UNKNOWN
Temperature	degF	108
Permeability	md	250
Net Pay	ft	100
Remaining Oil Sat	v/v	55%
Oil Viscosity	ср	5
Water Cut	%	99
Heterogeneity		UNKNOWN
Compartments		UNKNOWN
Dual Porosity		Single
Distance to NGL	miles	18
Distance to Gas Plant	miles	33
OOIP	MMstb	1568
Recovery Factor WF	%	29%
Remaining	MMstb	1110
Remaining	MMstb	222
EOR Target Oil	MMstb	55.5
EOR Prize	\$MM	1503
Gross Utilization	Mscf/stb	3.75
MI required	Bscf	208.1
	MMscf/d	38.0
15 yr MI compression reqd Net Utilization	Mscf/stb	1.64
Mil required	Bscf	91.0
15 yr MI purchase rate	MMscf/d	16.6
ro yr ivir purchase rate	WIWISCIVU	10.0

Our mission is to provide the highest quality engineering and geoscience consulting services to the petroleum industry in a creative, technologically rigorous, ethical, and cost effective fashion.

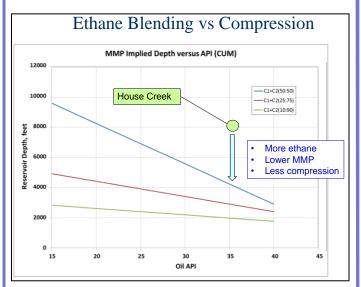
A plot of oil API versus reservoir depth is used to estimate the miscibility pressure and the amount of Ethane enrichment needed to maximize recovery. A shallow depth of around 3000 feet for the Cushing Field suggests about 60-65% Ethane enrichment is required for this reservoir. Lower injection pressures require even more additional Ethane enrichment (blue arrow).

The map for Cushing Field shows the location of all pipelines, with the location of the nearest NGL (green) and gas (blue) pipelines needed for the miscible injectant. All pipelines are just a short distance from this portion of the field.

Cushing Map Showing Pipelines

House Creek Field, Wyoming

The Sussex Sandstone reservoir of House Creek is much deeper and hotter than the previous Cushing example. A successful waterflood has recovered 31% of the original oil in place, which leaves 109.1 MMBO remaining. IRT estimates that an additional 27MMBO can be recovered by Ethane (25% of ROIP) which gives an EOR prize of \$780MM (assuming a net oil price of \$29 per barrel).


House Creek Screening Data

		Good
		Caution
		Warning
Depth	ft	8111
Oil Gravity	API	36
Solution Gas	Pb/Pi	UNKNOWN
Temperature	degF	176
Permeability	md	6.9
Net Pay	ft	14
Remaining Oil Sat	v/v	0.51
Oil Viscosity	ср	1.1
Water Cut	%	87%
Heterogeneity		0.88
Compartments		>Spacing
Dual Porosity		Single
Distance to NGL	miles	0
OOIP	MMstb	159
Recovery Factor	%	31%
Produced	MMstb	49.9
Remaining	MMstb	109.1
EOR Target Oil	MMstb	27.3
EOR Prize	\$MM	780
Gross Utilization	Mscf/stb	3.75
MI required	Bscf	102.3
15 yr MI compression reqd	MMscf/d	18.7
Net Utilization	Mscf/stb	1.64
MI required	Bscf	44.7
15 yr MI purchase rate	MMscf/d	8.2

Our mission is to provide the highest quality engineering and geoscience consulting services to the petroleum industry in a creative, technologically rigorous, ethical, and cost effective fashion.

Due to the deeper depth, the injectant would require much less Ethane enrichment to achieve miscibility at House Creek (20-30%) compared to the previous Cushing example.

The blue arrow on the plot again shows that lower compression and flood pressure requirements require a higher percentage of Ethane to achieve miscibility of the enriched injectant.

The map below shows the location of House Creek Field, which has an NGL pipeline (purple) as well as several gas plants (orange stars) nearby that could supply the necessary Ethane.

Ethane EOR Screening Offer

IRT is offering free screening of your potential Ethane EOR reservoirs. The screening template of 16 reservoir parameters (depth, porosity, oil API, etc.) is evaluated for Ethane EOR. The screening will estimate the remaining EOR prize and the amount of miscible injectant needed.

If Ethane EOR looks promising, then a phased approach is recommended to further refine the Ethane EOR potential:

- <u>Mechanistic Model</u>: 1 injector and 1 producer model to refine recovery factor, gross and net injection efficiency, and estimate an initial return on investment (ROI) for the project.
- <u>Type Pattern Model:</u> 2 or more injectors with offset producers to develop a more detailed geologic description that would help design a future field test or pilot area for Ethane injection.
- 3. <u>Full Field Model</u>: If the Type Pattern model and potential field test prove successful, the final step is to develop a full field development plan by creating both a static and dynamic reservoir model using the best petrophysical, geologic, and engineering information available. The final reservoir model is calibrated to historic field production data and creates a base case field development plan for Ethane EOR.

All data sent to IRT for the initial screening offer will be held in strict confidentiality and could provide your company with valuable information for any future EOR project.

For further information, please contact:

David Smith VP Marketing Work: 303-279-0877 ext. 22 Email: <u>dsmith@irt-inc.com</u> Website: <u>http://www.irt-inc.com</u> <u>http://www.irt-inc.com/eor-more-information.html</u>